login
A059695
Primes p such that p^2 reversed is also prime.
4
19, 37, 41, 89, 97, 139, 193, 271, 277, 281, 313, 331, 353, 373, 383, 397, 401, 421, 439, 443, 557, 587, 853, 971, 991, 1039, 1063, 1109, 1129, 1153, 1171, 1181, 1249, 1277, 1289, 1297, 1303, 1307, 1319, 1399, 1409, 1753, 1789, 1823, 1847, 1973
OFFSET
1,1
MATHEMATICA
Select[ Range[ 2500 ], PrimeQ[ # ] && PrimeQ[ ToExpression[ StringReverse[ ToString[ #^2 ] ] ] ] & ]
PROG
(Magma) [p: p in PrimesUpTo(2000) | IsPrime(Seqint(Reverse(Intseq(p^2))))]; // Vincenzo Librandi, Apr 12 2013
(Python)
from sympy import isprime, primerange
def ok(p): return isprime(int(str(p**2)[::-1]))
print([p for p in primerange(1, 2000) if ok(p)]) # Michael S. Branicky, Dec 27 2021
(PARI) select(p->isprime(fromdigits(Vecrev(digits(p^2)))), primes(1000)) \\ Mohammed Yaseen, Dec 31 2021
CROSSREFS
Cf. A059007.
Primes p such that p^k reversed is also prime: A059696 (k=3), ..., A059705 (k=12).
Sequence in context: A368833 A352885 A354431 * A134196 A217045 A139313
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Feb 06 2001
STATUS
approved