|
|
A216912
|
|
a(n) = denominator(B°(2*n))/4 where the B°(n) are Zagier's modified Bernoulli numbers.
|
|
1
|
|
|
6, 20, 315, 280, 66, 3003, 78, 9520, 305235, 20900, 138, 19734, 6, 7540, 15575175, 590240, 6, 107666559, 222, 11996600, 50536395, 19780, 282, 31534932, 66, 1060, 48532365, 738920, 354, 83912718435, 366, 1180480, 485415, 1340, 60918, 3667092237666, 438, 740
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence given for a(1)-a(15) in Note 6.2, p. 13 of Dixit and others.
|
|
LINKS
|
|
|
MAPLE
|
A216912 := n -> denom(add(binomial(2*n+r, 2*r)*bernoulli(r)/(2*n+r), r=0..2*n))/4;
|
|
MATHEMATICA
|
a[n_] := Denominator[Sum[Binomial[2n+r, 2r]*(BernoulliB[r]/(2n+r)), {r, 0, 2n}]]/4;
|
|
PROG
|
(PARI) a(n) = denominator(sum(k=0, 2*n, binomial(2*n+k, 2*k)*bernfrac(k)/(2*n+k)))/4; \\ Michel Marcus, Jul 14 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|