login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216912
a(n) = denominator(B°(2*n))/4 where the B°(n) are Zagier's modified Bernoulli numbers.
1
6, 20, 315, 280, 66, 3003, 78, 9520, 305235, 20900, 138, 19734, 6, 7540, 15575175, 590240, 6, 107666559, 222, 11996600, 50536395, 19780, 282, 31534932, 66, 1060, 48532365, 738920, 354, 83912718435, 366, 1180480, 485415, 1340, 60918, 3667092237666, 438, 740
OFFSET
1,1
COMMENTS
Sequence given for a(1)-a(15) in Note 6.2, p. 13 of Dixit and others.
LINKS
M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, arXiv:1303.6590 [math.NT], 2013.
A. Dixit, V. H. Moll, Ch. Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, arXiv:1209.4110v1 [math.NT], Sep 18, 2012.
MAPLE
A216912 := n -> denom(add(binomial(2*n+r, 2*r)*bernoulli(r)/(2*n+r), r=0..2*n))/4;
seq(A216912(i), i=1..38); # Peter Luschny, Sep 20 2012
MATHEMATICA
a[n_] := Denominator[Sum[Binomial[2n+r, 2r]*(BernoulliB[r]/(2n+r)), {r, 0, 2n}]]/4;
Array[a, 38] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
PROG
(PARI) a(n) = denominator(sum(k=0, 2*n, binomial(2*n+k, 2*k)*bernfrac(k)/(2*n+k)))/4; \\ Michel Marcus, Jul 14 2018
CROSSREFS
Sequence in context: A267903 A330825 A280039 * A175671 A222741 A338427
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Sep 20 2012
EXTENSIONS
a(16)-a(38) from Peter Luschny, Sep 20 2012
STATUS
approved