login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216915
T(n, k) = Product{1<=j<=n, gcd(j,k)=1 | j} / lcm{1<=j<=n, gcd(j,k)=1 | j} for n >= 0, k >= 1, square array read by antidiagonals.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 48, 1, 2, 1, 2, 1, 1, 1, 1, 144, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1, 17280, 3, 80
OFFSET
1,11
COMMENTS
T(n,k) = Product(R(n,k))/lcm(R(n,k)) where R(n,k) is the set of all integers up to n that are relatively prime to k.
T(n,k) = A216919(n,k)/A216917(n,k).
FORMULA
For n > 0:
A(n,1) = A025527(n);
A(4,n) = A000034(n);
A(n,n) = A128247(n).
EXAMPLE
k |n=0 1 2 3 4 5 6 7 8 9 10
---+------------------------------------
1 | 1 1 1 1 2 2 12 12 48 144 1440
2 | 1 1 1 1 1 1 1 1 1 3 3
3 | 1 1 1 1 2 2 2 2 8 8 80
4 | 1 1 1 1 1 1 1 1 1 3 3
5 | 1 1 1 1 2 2 12 12 48 144 144
6 | 1 1 1 1 1 1 1 1 1 1 1
7 | 1 1 1 1 2 2 12 12 48 144 1440
8 | 1 1 1 1 1 1 1 1 1 3 3
9 | 1 1 1 1 2 2 2 2 8 8 80
10 | 1 1 1 1 1 1 1 1 1 3 3
11 | 1 1 1 1 2 2 12 12 48 144 1440
12 | 1 1 1 1 1 1 1 1 1 1 1
13 | 1 1 1 1 2 2 12 12 48 144 1440
PROG
(Sage)
def A216915(n, k):
def R(n, k): return [j for j in (1..n) if gcd(j, k) == 1]
return mul(R(n, k))/lcm(R(n, k))
for k in (1..13): [A216915(n, k) for n in (0..10)]
CROSSREFS
Sequence in context: A352080 A295632 A139549 * A280569 A140345 A177706
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 02 2012
STATUS
approved