login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280569
a(n) = (-1)^n * 2 if n = 5*k and n!=0, otherwise a(n) = (-1)^n.
0
1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, 1, -1, 1, -1, 2, -1, 1, -1, 1
OFFSET
0,6
FORMULA
Euler transform of length 10 sequence [-1, 1, 0, 0, -1, -1, 0, 0, 0, 1].
a(n) = -b(n) where b() is multiplicative with b(2^e) = -1 if e>0, b(5^e) = 2 if e>0, b(p^e) = 1 otherwise.
G.f.: (1 - x + x^2) * (1 - x^3) / (1 + x^5).
G.f.: 1 - x / (1 + x) - x^5 / (1 + x^5).
a(n) = a(-n) for all n in Z.
a(5*n) = A280560(n) for all n in Z.
EXAMPLE
G.f. = 1 - x + x^2 - x^3 + x^4 - 2*x^5 + x^6 - x^7 + x^8 - x^9 + 2*x^10 + ...
MATHEMATICA
a[ n_] := (-1)^n If[ n != 0 && Divisible[n, 5], 2, 1];
LinearRecurrence[{0, 0, 0, 0, -1}, {1, -1, 1, -1, 1, -2}, 120] (* or *) PadRight[ {1}, 120, {2, -1, 1, -1, 1, -2, 1, -1, 1, -1}] (* Harvey P. Dale, Jul 18 2021 *)
PROG
(PARI) {a(n) = (-1)^n * if(n && n%5==0, 2, 1)};
(PARI) {a(n) = n=abs(n); polcoeff( (1 - x + x^2) * (1 - x^3) / (1 + x^5) + x * O(x^n), n)};
(Magma) m:=75; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x+x^2)*(1-x^3)/(1+x^5))); // G. C. Greubel, Jul 29 2018
CROSSREFS
Cf. A280560.
Sequence in context: A295632 A139549 A216915 * A140345 A177706 A130782
KEYWORD
sign
AUTHOR
Michael Somos, Jan 05 2017
STATUS
approved