Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Feb 11 2020 10:09:54
%S 6,20,315,280,66,3003,78,9520,305235,20900,138,19734,6,7540,15575175,
%T 590240,6,107666559,222,11996600,50536395,19780,282,31534932,66,1060,
%U 48532365,738920,354,83912718435,366,1180480,485415,1340,60918,3667092237666,438,740
%N a(n) = denominator(B°(2*n))/4 where the B°(n) are Zagier's modified Bernoulli numbers.
%C Sequence given for a(1)-a(15) in Note 6.2, p. 13 of Dixit and others.
%H Seiichi Manyama, <a href="/A216912/b216912.txt">Table of n, a(n) for n = 1..500</a>
%H M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., <a href="https://arxiv.org/abs/1303.6590">The Zagier polynomials. Part II: Arithmetic properties of coefficients</a>, arXiv:1303.6590 [math.NT], 2013.
%H A. Dixit, V. H. Moll, Ch. Vignat, <a href="http://arxiv.org/abs/1209.4110">The Zagier modification of Bernoulli numbers and a polynomial extension. Part I</a>, arXiv:1209.4110v1 [math.NT], Sep 18, 2012.
%p A216912 := n -> denom(add(binomial(2*n+r,2*r)*bernoulli(r)/(2*n+r),r=0..2*n))/4;
%p seq(A216912(i),i=1..38); # _Peter Luschny_, Sep 20 2012
%t a[n_] := Denominator[Sum[Binomial[2n+r, 2r]*(BernoulliB[r]/(2n+r)), {r, 0, 2n}]]/4;
%t Array[a, 38] (* _Jean-François Alcover_, Jul 14 2018, after _Peter Luschny_ *)
%o (PARI) a(n) = denominator(sum(k=0, 2*n, binomial(2*n+k, 2*k)*bernfrac(k)/(2*n+k)))/4; \\ _Michel Marcus_, Jul 14 2018
%Y Cf. A216922, A216923.
%K nonn
%O 1,1
%A _Jonathan Vos Post_, Sep 20 2012
%E a(16)-a(38) from _Peter Luschny_, Sep 20 2012