login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216648
Triangle T(n,k) in which n-th row lists in increasing order all positive integers with a representation as totally balanced 2n digit binary string without totally balanced proper prefixes such that all consecutive totally balanced substrings are in nondecreasing order; n>=1, 1<=k<=A000081(n).
5
2, 12, 52, 56, 212, 216, 232, 240, 852, 856, 872, 880, 920, 936, 944, 976, 992, 3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, 3752, 3760, 3792, 3808, 3888, 3920, 3936, 4000, 4032, 13652, 13656, 13672, 13680, 13720, 13736, 13744, 13776
OFFSET
1,1
COMMENTS
There is a simple bijection between the elements of row n and the rooted trees with n nodes. Each matching pair (1,0) in the binary string representation encodes a node, each totally balanced substring encodes a list of subtrees.
LINKS
FORMULA
T(n,k) = A216649(n-1,k)*2 + 2^(2*n-1) for n>1.
EXAMPLE
856 is element of row 5, the binary string representation (with totally balanced substrings enclosed in parentheses) is (1(10)(10)(1(10)0)0). The encoded rooted tree is:
. o
. /|\
. o o o
. |
. o
Triangle T(n,k) begins:
2;
12;
52, 56;
212, 216, 232, 240;
852, 856, 872, 880, 920, 936, 944, 976, 992;
3412, 3416, 3432, 3440, 3480, 3496, 3504, 3536, 3552, 3688, 3696, ...
Triangle T(n,k) in binary:
10;
1100;
110100, 111000;
11010100, 11011000, 11101000, 11110000;
1101010100, 1101011000, 1101101000, 1101110000, 1110011000, ...
110101010100, 110101011000, 110101101000, 110101110000, 110110011000, ...
MAPLE
F:= proc(n) option remember; `if`(n=1, [10], sort(map(h->
parse(cat(1, sort(h)[], 0)), g(n-1, n-1)))) end:
g:= proc(n, i) option remember; `if`(i=1, [[10$n]], [seq(seq(seq(
[seq (F(i)[w[t]-t+1], t=1..j), v[]], w=combinat[choose](
[$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
end:
b:= proc(n) local h, i, r; h, r:= n, 0; for i from 0
while h>0 do r:= r+2^i*irem(h, 10, 'h') od; r
end:
T:= proc(n) option remember; map(b, F(n))[] end:
seq(T(n), n=1..7);
CROSSREFS
First column gives: A080675.
Last elements of rows give: A020522.
Row lengths are: A000081.
Subsequence of A057547, A081292.
Sequence in context: A054667 A009537 A057547 * A043007 A300572 A176580
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 12 2012
STATUS
approved