login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009537
Expansion of sin(x)*cosh(log(1+x)).
1
0, 1, 0, 2, -12, 51, -300, 2120, -16968, 152677, -1526760, 16794414, -201532980, 2619928663, -36679001268, 550185019124, -8802960306000, 149650325201865, -2693705853633552, 51180411219037658, -1023608224380753180
OFFSET
0,4
LINKS
FORMULA
a(n) ~ n! * (-1)^(n+1) * sin(1) / 2. - Vaclav Kotesovec, Jan 23 2015
From Robert Israel, Jan 07 2019: (Start)
E.g.f.: sin(x)*(1+x+1/(1+x))/2.
a(2*k) = (-1)^(k+1)*k - (2*k)!*Sum_{j=0..k-1} (-1)^j/(2*(2*j+1)!).
a(2*k+1) = (-1)^k + (2*k+1)!*Sum_{j=0..k-1} (-1)^j/(2*(2*j+1)!).
(End)
MAPLE
S:= series(sin(x)*(1+x+1/(1+x))/2, x, 51):
seq(coeff(S, x, j)*j!, j=0..50); # Robert Israel, Jan 07 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sin[x]*Cosh[Log[1+x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 20 2015 *)
CoefficientList[Series[((1 + (1 + x)^2)*Sin[x])/(2*(1 + x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
CROSSREFS
Sequence in context: A359523 A323851 A054667 * A057547 A216648 A043007
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
Prior Mathematica program replaced by Harvey P. Dale, Aug 20 2015
STATUS
approved