login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216395
Number of values of k for which sigma(k) is a permutation of decimal digits of k, for 2^(n-1) < k < 2^n.
1
1, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 6, 3, 5, 14, 22, 26, 60, 64, 71, 179, 333, 274, 751, 1653, 1726, 3032
OFFSET
1,9
FORMULA
a(n) = # { k in A115920 | 2^(n-1) < k < 2^n }. - M. F. Hasler, Feb 24 2014
EXAMPLE
a(12) = 6 because the values of k satisfying the condition for 2^11 < k < 2^12 are {2391, 2556, 2931, 3409, 3678, 3679}. - V. Raman, Feb 19 2014
PROG
(PARI) a(n)=sum(k=2^(n-1), 2^n, vecsort(digits(k)) == vecsort(digits(sigma(k)))) \\ V. Raman, Feb 19 2014, based on edits by M. F. Hasler
(Python)
from sympy import divisor_sigma
def A216395(n):
if n == 1:
return 1
c = 0
for i in range(2**(n-1)+1, 2**n):
s1, s2 = sorted(str(i)), sorted(str(divisor_sigma(i)))
if len(s1) == len(s2) and s1 == s2:
c += 1
return c # Chai Wah Wu, Jul 23 2015
CROSSREFS
Sequence in context: A253176 A079408 A114376 * A058096 A049780 A159584
KEYWORD
nonn,base,more,changed
AUTHOR
V. Raman, Sep 06 2012
STATUS
approved