|
|
A216370
|
|
Number of ABC triples with quality q > 1 and c < 10^n.
|
|
2
|
|
|
1, 6, 31, 120, 418, 1268, 3499, 8987, 22316, 51677, 116978, 252856, 528275, 1075319, 2131671, 4119410, 7801334, 14482059
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
Dorian Goldfeld, Beyond the last theorem, Math Horizons, 1996 (September), pp. 26-34.
Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 2004, ISBN 0-387-20860-7.
Carl Pomerance, Computational Number Theory, The Princeton Companion to Mathematics, Princeton University Press, 2008, pp. 361-362.
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Jordan Ellenberg, Mochizuki on ABC
Reken Mee met ABC, Synthese resultaten, (Dutch), 2011
Wikipedia, abc conjecture
|
|
EXAMPLE
|
a(2) = 6 because there are 6 (a,b,c) triples with c < 10^2 and q > 1. Those triples are {1,8,9}, {1,48,49}, {1,63,64}, {1,80,81}, {5,27,32}, and {32,49,81}.
|
|
MATHEMATICA
|
rad[n_] := Times @@ Transpose[FactorInteger[n]][[1]]; Table[t = {}; mx = 10^n; Do[c = a + b; If[c < mx && GCD[a, b] == 1 && Log[c] > Log[rad[a*b*c]], AppendTo[t, {a, b, c}]], {a, mx/2}, {b, a, mx - a}]; Length[t], {n, 3}] (* T. D. Noe, Sep 06 2012 *)
|
|
CROSSREFS
|
Cf. A007947, A120498, A130510, A130511, A130512.
Sequence in context: A337574 A166786 A003728 * A225425 A267890 A244199
Adjacent sequences: A216367 A216368 A216369 * A216371 A216372 A216373
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jonathan Vos Post, Sep 05 2012
|
|
STATUS
|
approved
|
|
|
|