login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216367
G.f.: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x)^2.
2
1, 1, 3, 10, 40, 184, 948, 5384, 33300, 222192, 1587512, 12071776, 97206544, 825343600, 7362067888, 68772244640, 670917511424, 6818719677952, 72038876668544, 789610228149632, 8963457852609984, 105211331721594368, 1275095788516589952, 15934546466314258688
OFFSET
0,3
COMMENTS
Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 40*x^4 + 184*x^5 + 948*x^6 +...
where
A(x) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x))^2 + x^3/((1-x)*(1-2*x)*(1-3*x))^2 + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x))^2 +...
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Sum[x^n/Product[(1-k*x)^2, {k, 0, n}], {n, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Dec 15 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1, m, 1-k*x +x*O(x^n))^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A300043 A258973 A217885 * A003703 A242651 A231531
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2012
STATUS
approved