OFFSET
0,3
COMMENTS
Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 40*x^4 + 184*x^5 + 948*x^6 +...
where
A(x) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x))^2 + x^3/((1-x)*(1-2*x)*(1-3*x))^2 + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x))^2 +...
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Sum[x^n/Product[(1-k*x)^2, {k, 0, n}], {n, 0, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Dec 15 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1, m, 1-k*x +x*O(x^n))^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2012
STATUS
approved