login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x)^2.
2

%I #13 Dec 22 2018 04:42:20

%S 1,1,3,10,40,184,948,5384,33300,222192,1587512,12071776,97206544,

%T 825343600,7362067888,68772244640,670917511424,6818719677952,

%U 72038876668544,789610228149632,8963457852609984,105211331721594368,1275095788516589952,15934546466314258688

%N G.f.: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x)^2.

%C Compare to o.g.f. of Bell numbers: Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*x).

%H Vaclav Kotesovec, <a href="/A216367/b216367.txt">Table of n, a(n) for n = 0..300</a>

%e G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 40*x^4 + 184*x^5 + 948*x^6 +...

%e where

%e A(x) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x))^2 + x^3/((1-x)*(1-2*x)*(1-3*x))^2 + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x))^2 +...

%t With[{nn=30},CoefficientList[Series[Sum[x^n/Product[(1-k*x)^2,{k,0,n}],{n,0,nn}],{x,0,nn}],x]] (* _Harvey P. Dale_, Dec 15 2018 *)

%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1, m, 1-k*x +x*O(x^n))^2), n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A216373, A000110.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 05 2012