login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215245
a(n) = minimal value of A215244(k) for 2^n <= k < 2^(n+1).
6
1, 1, 2, 3, 4, 6, 9, 13, 20, 29, 42, 65, 95, 136, 212, 308, 444, 687, 1005, 1439, 2242, 3257, 4696, 7266, 10629, 15219
OFFSET
0,3
COMMENTS
The initial terms roughly satisfy a(n) approx.= a(n-1)+a(n-3), which leads to the guess that perhaps a(n) ~ 1.4655^n, from the real zero of x^3-x-1. - N. J. A. Sloane, Aug 08 2012
EXAMPLE
The values of A215244(k) for k=8 through 15 are (4, 3, 3, 3, 4, 3, 4, 8), with minimal value a(3) = 3.
MAPLE
A215245 := proc(n)
local a, k ;
a := A215244(2^n) ;
for k from 2^n+1 to 2^(n+1)-1 do
a := min(a, A215244(k)) ;
end do:
a ;
end proc: # R. J. Mathar, Aug 07 2012
MATHEMATICA
palQ[L_] := SameQ[L, Reverse[L]];
b[L_] := b[L] = Module[{a = palQ[L] // Boole, c}, For[c = 1, c < Length[L], c++, If[palQ[L[[;; c]]], a = a + b[L[[c+1 ;; ]]]]]; a];
a215244[n_] := If[n == 1, 1, b[IntegerDigits[n, 2]]];
a215245[n_] := Module[{a, k}, a = a215244[2^n]; For[k = 2^n+1, k <= 2^(n+1) - 1, k++, a = Min[a, a215244[k]]]; a];
a215245 /@ Range[0, 20] (* Jean-François Alcover, Oct 28 2019 *)
CROSSREFS
Cf. A215244, A215246, A215253, A215254. A215255 gives an upper bound.
Sequence in context: A061418 A355909 A136423 * A078932 A206740 A172161
KEYWORD
nonn,more,base
AUTHOR
N. J. A. Sloane, Aug 07 2012
EXTENSIONS
a(10)-a(13) from R. J. Mathar, Aug 07 2012
a(14)-a(17) from N. J. A. Sloane, Aug 08 2012, using Mathar's Maple code.
a(18)-a(25) from Giovanni Resta, Mar 19 2013
STATUS
approved