login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215255
Let S be the binary string consisting of the first n digits of (100101)*; a(n) = number of ways of writing S as a product of palindromes.
2
1, 1, 2, 3, 4, 6, 10, 13, 23, 29, 42, 65, 107, 136, 243, 308, 444, 687, 1131, 1439, 2570, 3257, 4696, 7266, 11962, 15219, 27181, 34447, 49666, 76847, 126513, 160960, 287473, 364320, 525280, 812753, 1338033, 1702353, 3040386, 3853139
OFFSET
0,3
COMMENTS
If S is the binary representation of the decimal number N, then a(n) = A215244(N).
a(n) is an upper bound for A215245(n), which might be tight infinitely often.
FORMULA
Recurrence: For n >= 4, a(n) = a(n-1)+a(n-d), where d = [3,2,4,2,4,3] according as n == [0,1,2,3,4,5] mod 6; initial conditions a(0)=a(1)=a(2)=1, a(3)=2.
G.f.: (x^17+x^14+x^12+5*x^11+2*x^10-x^9+3*x^8+3*x^7+6*x^5+4*x^4+3*x^3+2*x^2+x+1)/(1-10*x^6-6*x^12-x^18).
a(n) ~ C * D^n, where D = 1.4815692... and C depends on n mod 6 (approximate values of C are [0.580722..., 0.6452899..., 0.554135..., 0.667994..., 0.571395..., 0.556061...], respectively).
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Aug 14 2012
STATUS
approved