login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215247 A Beatty sequence: a(n) = floor((n-1/2)*(2 + 2*sqrt(2))). 2
2, 7, 12, 16, 21, 26, 31, 36, 41, 45, 50, 55, 60, 65, 70, 74, 79, 84, 89, 94, 98, 103, 108, 113, 118, 123, 127, 132, 137, 142, 147, 152, 156, 161, 166, 171, 176, 181, 185, 190, 195, 200, 205, 210, 214, 219, 224, 229, 234, 239, 243, 248, 253, 258, 263, 267, 272, 277, 282, 287, 292, 296, 301, 306 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8

N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)

Index entries for sequences related to Beatty sequences

MAPLE

seq(floor((n-1/2)*(2+2*sqrt(2))), n=1..70); # Muniru A Asiru, Oct 07 2018

MATHEMATICA

Table[Floor[(2*n - 1)*(1 + Sqrt[2])], {n, 1, 100}] (* G. C. Greubel, Oct 05 2018 *)

PROG

(Sage) [floor((n-1/2)*(2+2*sqrt(2))) for n in range(1, 65)]

(PARI) vector(100, n, floor((2*n - 1)*(1 + sqrt(2)))) \\ G. C. Greubel, Oct 05 2018

(MAGMA) [Floor((2*n - 1)*(1 + Sqrt(2))): n in [1..100]] // G. C. Greubel, Oct 05 2018

CROSSREFS

Bisection of A003151.

Sequence in context: A006143 A190453 A320900 * A160455 A045929 A277598

Adjacent sequences:  A215244 A215245 A215246 * A215248 A215249 A215250

KEYWORD

nonn

AUTHOR

Alexander Riasanovsky, Aug 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 11:39 EDT 2021. Contains 347654 sequences. (Running on oeis4.)