login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215247
A Beatty sequence: a(n) = floor((n-1/2)*(2 + 2*sqrt(2))).
2
2, 7, 12, 16, 21, 26, 31, 36, 41, 45, 50, 55, 60, 65, 70, 74, 79, 84, 89, 94, 98, 103, 108, 113, 118, 123, 127, 132, 137, 142, 147, 152, 156, 161, 166, 171, 176, 181, 185, 190, 195, 200, 205, 210, 214, 219, 224, 229, 234, 239, 243, 248, 253, 258, 263, 267, 272, 277, 282, 287, 292, 296, 301, 306
OFFSET
1,1
MAPLE
seq(floor((n-1/2)*(2+2*sqrt(2))), n=1..70); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
Table[Floor[(2*n - 1)*(1 + Sqrt[2])], {n, 1, 100}] (* G. C. Greubel, Oct 05 2018 *)
PROG
(Sage) [floor((n-1/2)*(2+2*sqrt(2))) for n in range(1, 65)]
(PARI) vector(100, n, floor((2*n - 1)*(1 + sqrt(2)))) \\ G. C. Greubel, Oct 05 2018
(Magma) [Floor((2*n - 1)*(1 + Sqrt(2))): n in [1..100]] // G. C. Greubel, Oct 05 2018
CROSSREFS
Bisection of A003151.
Sequence in context: A006143 A190453 A320900 * A160455 A045929 A277598
KEYWORD
nonn
AUTHOR
STATUS
approved