%I #42 Sep 08 2022 08:46:03
%S 2,7,12,16,21,26,31,36,41,45,50,55,60,65,70,74,79,84,89,94,98,103,108,
%T 113,118,123,127,132,137,142,147,152,156,161,166,171,176,181,185,190,
%U 195,200,205,210,214,219,224,229,234,239,243,248,253,258,263,267,272,277,282,287,292,296,301,306
%N A Beatty sequence: a(n) = floor((n-1/2)*(2 + 2*sqrt(2))).
%H G. C. Greubel, <a href="/A215247/b215247.txt">Table of n, a(n) for n = 1..10000</a>
%H J. N. Cooper and A. W. N. Riasanovsky, <a href="http://www.math.sc.edu/~cooper/Sigma.pdf">On the Reciprocal of the Binary Generating Function for the Sum of Divisors</a>, 2012; <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Cooper/cooper3.html">J. Int. Seq. 16 (2013) #13.1.8</a>
%H N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence)
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%p seq(floor((n-1/2)*(2+2*sqrt(2))),n=1..70); # _Muniru A Asiru_, Oct 07 2018
%t Table[Floor[(2*n - 1)*(1 + Sqrt[2])], {n, 1, 100}] (* _G. C. Greubel_, Oct 05 2018 *)
%o (Sage) [floor((n-1/2)*(2+2*sqrt(2))) for n in range(1, 65)]
%o (PARI) vector(100, n, floor((2*n - 1)*(1 + sqrt(2)))) \\ _G. C. Greubel_, Oct 05 2018
%o (Magma) [Floor((2*n - 1)*(1 + Sqrt(2))): n in [1..100]] // _G. C. Greubel_, Oct 05 2018
%Y Bisection of A003151.
%K nonn
%O 1,1
%A _Alexander Riasanovsky_, Aug 10 2012