The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061418 a(n) = floor(a(n-1)*3/2) with a(1) = 2. 24
 2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 141, 211, 316, 474, 711, 1066, 1599, 2398, 3597, 5395, 8092, 12138, 18207, 27310, 40965, 61447, 92170, 138255, 207382, 311073, 466609, 699913, 1049869, 1574803, 2362204, 3543306, 5314959, 7972438 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Can be stated as the number of animals starting from a single pair if any pair of animals can produce a single offspring (as in the game Minecraft, if the player allows offspring to fully grow before breeding again). - Denis Moskowitz, Dec 05 2012 Maximum number of partial products that can be added in a Wallace tree multiplier with n-1 full adder stages. - Chinmaya Dash, Aug 19 2020 LINKS Iain Fox, Table of n, a(n) for n = 1..1000 (first 500 terms from Harry J. Smith) Don Knuth, Ambidextrous Numbers, Preprint, September 2022. M. van de Vel, Determination of msd(L^n), J. Algebraic Combin. 9(2) (1999), 161-171. See Table 5. - N. J. A. Sloane, Mar 26 2012 Mark van Wijk, The Quest for the Best Thread-Safe Java List, Univ. of Twente (Netherlands 2022). Wikipedia, Wallace tree. FORMULA a(n) = A061419(n) + 1 = ceiling(K*(3/2)^n) where K = 1.08151366859... The constant K is (2/3)*K(3) (see A083286). - Ralf Stephan, May 29 2003 EXAMPLE a(6) = floor(9*3/2) = 13. PROG (Magma) [ n eq 1 select 2 else Floor(Self(n-1)*(3/2)): n in [1..39] ]; // Klaus Brockhaus, Nov 14 2008 (PARI) { a=4/3; for (n=1, 500, a=a*3\2; write("b061418.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 22 2009 (PARI) first(n) = my(v=vector(n)); v[1]=2; for(i=2, n, v[i]=v[i-1]*3\2); v \\ Iain Fox, Jul 15 2022 (Python) from itertools import islice def A061418_gen(): # generator of terms a = 2 while True: yield a a += a>>1 A061418_list = list(islice(A061418_gen(), 70)) # Chai Wah Wu, Sep 20 2022 CROSSREFS Cf. A002379, A003312, A034082, A061419, A083286. First differences are in A073941. Sequence in context: A352042 A121653 A238434 * A355909 A136423 A215245 Adjacent sequences: A061415 A061416 A061417 * A061419 A061420 A061421 KEYWORD nonn,easy AUTHOR Henry Bottomley, May 02 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 10:06 EST 2023. Contains 367678 sequences. (Running on oeis4.)