login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121653
G.f.: A(x) = 1/(1 - x*B(x^3)), where B(x) = Sum_{n>=0} a(n)^3*x^n is the g.f. of A121652.
4
1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 67, 102, 150, 243, 378, 568, 895, 1390, 2115, 3366, 5229, 7974, 12687, 19785, 30307, 47893, 74761, 115063, 181457, 283143, 436831, 687963, 1073820, 1659809, 2608418, 4072442, 6306619, 9980210, 15617469
OFFSET
0,5
FORMULA
a(n) = A121652(n)^(1/3).
EXAMPLE
A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 +...
The coefficients of 1 - 1/A(x) equal the cube of each term:
1/A(x) = 1 - x - x^4 - x^7 - x^10 - 8*x^13 - 27*x^16 - 64*x^19 - 216*x^22 -... - a(n)^3*x^(3*n+1) -...
PROG
(PARI) {a(n)=local(B); if(n==0, 1, B=sum(k=0, n\3, a(k)^3*x^(3*k)); polcoeff(1/(1-x*B+x*O(x^n)), n))}
CROSSREFS
Cf. A121652; trisections: A121654, A121655, A121656.
Sequence in context: A199804 A101913 A352042 * A375922 A238434 A061418
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2006
STATUS
approved