login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121650
A bisection of A121649; a(n) = A121649(2*n) = A121648(2*n)^(1/2).
3
1, 1, 3, 8, 27, 89, 300, 1008, 3563, 12483, 44583, 158600, 572548, 2057792, 7451924, 26913176, 98321435, 358017691, 1312060393, 4797471336, 17666696455, 64890598361, 239454075896, 881886659872, 3264772507980, 12061404124676
OFFSET
0,3
FORMULA
G.f.: A(x) = 1/(1 - x*B(x)^2), where B(x) = Sum_{n>=0} A121649(n)^2*x^n is the g.f. of A121648.
EXAMPLE
A(x) = 1 + x + 3*x^2 + 8*x^3 + 27*x^4 + 89*x^5 + 300*x^6 +...
1/A(x) = 1 - x - 2*x^2 - 3*x^3 - 10*x^4 - 27*x^5 - 76*x^6 - 212*x^7 -...
1/A(x) = 1 - x*B(x)^2, where
B(x)^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 27*x^4 + 76*x^5 + 212*x^6 +...
and B(x) is the g.f. of A121648 where all coefficients are squares:
B(x) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 25*x^5 + 64*x^6 + 256*x^7 +...
PROG
(PARI) {a(n)=local(B=1+x); if(n==0, 1, for(m=0, n, B=1/(1-x*sum(k=0, m, polcoeff(B, k)^2*x^(2*k))+O(x^(2*n+2)))); polcoeff(B, 2*n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2006
STATUS
approved