login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199804
G.f.: 1/(1+x+x^3).
3
1, -1, 1, -2, 3, -4, 6, -9, 13, -19, 28, -41, 60, -88, 129, -189, 277, -406, 595, -872, 1278, -1873, 2745, -4023, 5896, -8641, 12664, -18560, 27201, -39865, 58425, -85626, 125491, -183916, 269542, -395033, 578949, -848491, 1243524, -1822473, 2670964, -3914488, 5736961, -8407925, 12322413, -18059374, 26467299, -38789712, 56849086, -83316385
OFFSET
0,4
COMMENTS
There are several similar sequences already in the OEIS, but this one warrants its own entry because it is one of Hirschhorn's family.
LINKS
Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See K_n.
FORMULA
a(n) = (-1)^n*A000930(n). - R. J. Mathar, Jul 10 2012
G.f.: 1 - x/(G(0) + x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-a(n-3). - Harvey P. Dale, Feb 18 2016
MATHEMATICA
CoefficientList[Series[1/(1+x+x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[ {-1, 0, -1}, {1, -1, 1}, 50] (* Harvey P. Dale, Feb 18 2016 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1+x+x^3)) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Sequence in context: A000930 A078012 A135851 * A101913 A352042 A121653
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 10 2011
STATUS
approved