OFFSET
0,4
COMMENTS
There are several similar sequences already in the OEIS, but this one warrants its own entry because it is one of Hirschhorn's family.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael D. Hirschhorn, Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See K_n.
Index entries for linear recurrences with constant coefficients, signature (-1, 0, -1).
FORMULA
a(n) = (-1)^n*A000930(n). - R. J. Mathar, Jul 10 2012
G.f.: 1 - x/(G(0) + x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-a(n-3). - Harvey P. Dale, Feb 18 2016
MATHEMATICA
CoefficientList[Series[1/(1+x+x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[ {-1, 0, -1}, {1, -1, 1}, 50] (* Harvey P. Dale, Feb 18 2016 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1+x+x^3)) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 10 2011
STATUS
approved