login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1/(1+x+x^3).
3

%I #25 Jan 05 2025 19:51:39

%S 1,-1,1,-2,3,-4,6,-9,13,-19,28,-41,60,-88,129,-189,277,-406,595,-872,

%T 1278,-1873,2745,-4023,5896,-8641,12664,-18560,27201,-39865,58425,

%U -85626,125491,-183916,269542,-395033,578949,-848491,1243524,-1822473,2670964,-3914488,5736961,-8407925,12322413,-18059374,26467299,-38789712,56849086,-83316385

%N G.f.: 1/(1+x+x^3).

%C There are several similar sequences already in the OEIS, but this one warrants its own entry because it is one of Hirschhorn's family.

%H G. C. Greubel, <a href="/A199804/b199804.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael D. Hirschhorn, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/43-4/paper43-4-5.pdf">Non-trivial intertwined second-order recurrence relations</a>, Fibonacci Quart. 43 (2005), no. 4, 316-325. See K_n.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1, 0, -1).

%F a(n) = (-1)^n*A000930(n). - _R. J. Mathar_, Jul 10 2012

%F G.f.: 1 - x/(G(0) + x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 16 2012

%F G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) - 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 08 2013

%F a(0)=1, a(1)=-1, a(2)=1, a(n)=a(n-1)-a(n-3). - _Harvey P. Dale_, Feb 18 2016

%t CoefficientList[Series[1/(1+x+x^3),{x,0,50}],x] (* or *) LinearRecurrence[ {-1,0,-1},{1,-1,1},50] (* _Harvey P. Dale_, Feb 18 2016 *)

%o (PARI) x='x+O('x^50); Vec(1/(1+x+x^3)) \\ _G. C. Greubel_, Apr 29 2017

%K sign,changed

%O 0,4

%A _N. J. A. Sloane_, Nov 10 2011