login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214622
Triangle read by rows, matrix inverse of [x^(n-k)](skp(n,x)-skp(n,x-1)+x^n) where skp denotes the Swiss-Knife polynomials A153641.
0
1, -1, 1, 3, -2, 1, -10, 9, -3, 1, 45, -40, 18, -4, 1, -256, 225, -100, 30, -5, 1, 1743, -1536, 675, -200, 45, -6, 1, -13840, 12201, -5376, 1575, -350, 63, -7, 1, 125625, -110720, 48804, -14336, 3150, -560, 84, -8, 1, -1282816, 1130625, -498240, 146412, -32256, 5670, -840, 108, -9, 1
OFFSET
0,4
FORMULA
T(n,k) = matrix inverse of A109449(n,k)*(-1)^floor((k-n+5)/2).
T(n,0) = A003704(n+1).
E.g.f.: exp(x*z)/(sech(x)+tanh(x)). - Peter Luschny, Aug 01 2012
EXAMPLE
Triangle begins:
1;
-1, 1;
3, -2, 1;
-10, 9, -3, 1;
45, -40, 18, -4, 1;
-256, 225, -100, 30, -5, 1;
1743, -1536, 675, -200, 45, -6, 1;
...
MAPLE
A214622_row := proc(n) local s, t, k;
s := series(exp(z*x)/(sech(x)+tanh(x)), x, n+2);
t := factorial(n)*coeff(s, x, n); seq(coeff(t, z, k), k=(0..n)) end:
for n from 0 to 7 do A214622_row(n) od; # Peter Luschny, Aug 01 2012
MATHEMATICA
A214622row[n_] := Module[{s, t},
s = Series[Exp[z*x]/(Sech[x] + Tanh[x]), {x, 0, n+2}];
t = n!*Coefficient[s, x, n];
Table[Coefficient[t, z, k], {k, 0, n}]];
Table[A214622row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, May 25 2024, after Peter Luschny *)
PROG
(Sage)
R = PolynomialRing(ZZ, 'x')
@CachedFunction
def skp(n, x) : # Swiss-Knife polynomials A153641.
if n == 0 : return 1
return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
def A109449_signed(n, k) : return 0 if k > n else R(skp(n, x)-skp(n, x-1)+x^n)[k]
T = matrix(ZZ, 9, A109449_signed).inverse(); T
CROSSREFS
Sequence in context: A101894 A187105 A116071 * A327801 A320578 A267836
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 23 2012
STATUS
approved