login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214621
Numbers n such that at least one other integer m exists with the same smallest and same largest prime factors, and same multisets of decimal and binary digits as n.
3
1080, 1260, 1800, 2016, 2673, 3024, 3267, 3402, 4032, 4500, 4653, 4950, 5346, 5400, 5670, 5757, 5940, 6048, 6345, 6534, 6804, 7056, 7560, 7575, 8064, 11084, 11542, 12654, 12915, 13026, 13068, 13260, 13860, 14018, 14490, 14652, 14904, 15124, 15129, 16032, 16320
OFFSET
1,1
COMMENTS
Decimal digits of m are a permutation of decimal digits of n,
binary digits of m are a permutation of binary digits of a.
Conjecture: there is X such that among integers bigger than X more than 50% are in the sequence.
LINKS
EXAMPLE
1080 and 1800 have the same set of decimal digits, same set of binary digits (10000111000 versus 11100001000), same smallest prime factor 2, and same largest prime factor 5.
MAPLE
Res:= {}:
for n from 1 to 2^16-1 do
f:= numtheory:-factorset(n);
v:= [min(f), max(f), ilog2(n), convert(convert(n, base, 2), `+`), sort(convert(n, base, 10))];
if assigned(R[v]) then
Res:= Res union {n, R[v]}
else
R[v]:= n
fi
od:
sort(convert(Res, list)); # Robert Israel, Sep 28 2018
PROG
(Python)
# primes = [2...99991]
# ~15 minutes
TOP = 100000
smallest = [0]*TOP
largest = [0]*TOP
decimal = [0]*TOP
binary = [0]*TOP
flags = [0]*TOP
for n in range(1, TOP):
curSm = curLa = curDec = curBin = 0
t = b = d = n
while b:
curBin += 1000**( b&1 )
b /= 2
while d:
curDec += 10**( d%10 )
d /= 10
for p in primes:
if t%p==0:
if curSm==0:
curSm = p
curLa = p
t/=p
while t%p==0:
t/=p
if t==1:
break
binary[n] = curBin
decimal[n] = curDec
smallest[n] = curSm
largest[n] = curLa
for k in range(1, n):
if smallest[k]==curSm and largest[k]==curLa:
if decimal[k]==curDec and binary[k]==curBin:
flags[k]+=1
flags[n]+=1
for n in range(1, TOP):
if flags[n]>0:
print n,
CROSSREFS
Sequence in context: A023085 A351672 A163562 * A179688 A159210 A250538
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Jul 23 2012
STATUS
approved