%I #31 May 25 2024 12:12:58
%S 1,-1,1,3,-2,1,-10,9,-3,1,45,-40,18,-4,1,-256,225,-100,30,-5,1,1743,
%T -1536,675,-200,45,-6,1,-13840,12201,-5376,1575,-350,63,-7,1,125625,
%U -110720,48804,-14336,3150,-560,84,-8,1,-1282816,1130625,-498240,146412,-32256,5670,-840,108,-9,1
%N Triangle read by rows, matrix inverse of [x^(n-k)](skp(n,x)-skp(n,x-1)+x^n) where skp denotes the Swiss-Knife polynomials A153641.
%F T(n,k) = matrix inverse of A109449(n,k)*(-1)^floor((k-n+5)/2).
%F T(n,0) = A003704(n+1).
%F E.g.f.: exp(x*z)/(sech(x)+tanh(x)). - _Peter Luschny_, Aug 01 2012
%e Triangle begins:
%e 1;
%e -1, 1;
%e 3, -2, 1;
%e -10, 9, -3, 1;
%e 45, -40, 18, -4, 1;
%e -256, 225, -100, 30, -5, 1;
%e 1743, -1536, 675, -200, 45, -6, 1;
%e ...
%p A214622_row := proc(n) local s,t,k;
%p s := series(exp(z*x)/(sech(x)+tanh(x)),x,n+2);
%p t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
%p for n from 0 to 7 do A214622_row(n) od; # _Peter Luschny_, Aug 01 2012
%t A214622row[n_] := Module[{s, t},
%t s = Series[Exp[z*x]/(Sech[x] + Tanh[x]), {x, 0, n+2}];
%t t = n!*Coefficient[s, x, n];
%t Table[Coefficient[t, z, k], {k, 0, n}]];
%t Table[A214622row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, May 25 2024, after _Peter Luschny_ *)
%o (Sage)
%o R = PolynomialRing(ZZ, 'x')
%o @CachedFunction
%o def skp(n, x) : # Swiss-Knife polynomials A153641.
%o if n == 0 : return 1
%o return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
%o def A109449_signed(n, k) : return 0 if k > n else R(skp(n, x)-skp(n, x-1)+x^n)[k]
%o T = matrix(ZZ, 9, A109449_signed).inverse(); T
%K sign,tabl
%O 0,4
%A _Peter Luschny_, Jul 23 2012