login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214613
Abelian complexity function of ordinary paperfolding word (A014707).
3
2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 6, 5, 6, 5, 6, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 7, 6, 5, 6, 7, 6, 5, 6, 7, 6, 5, 6, 7, 6, 5, 6, 5, 4, 3, 4, 5, 6, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 7, 6, 5, 6, 7
OFFSET
1,1
COMMENTS
k first appears at position A005578(k-1). - Charlie Neder, Mar 03 2019
LINKS
Blake Madill, Narad Rampersad, The abelian complexity of the paperfolding word, Discrete Math. 313 (2013), no. 7, 831--838. MR3017968.
FORMULA
From Charlie Neder, Mar 03 2019 [Corrected by Kevin Ryde, Sep 05 2020]: (Start)
Madill and Rampersad provide the following recurrence:
a(1) = 2,
a(4n) = a(2n),
a(4n+2) = a(2n+1) + 1,
a(16n+1) = a(8n+1),
a(16n+{3,7,9,13}) = a(2n+1) + 2,
a(16n+5) = a(4n+1) + 2,
a(16n+11) = a(4n+3) + 2,
a(16n+15) = a(2n+2) + 1. (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 08 2013
EXTENSIONS
a(21)-a(82) from Charlie Neder, Mar 03 2019
STATUS
approved