OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Jean-Paul Allouche, The Number of Factors in a Paperfolding Sequence, Bulletin of the Australian Mathematical Society, volume 46, number 1, August 1992, pages 23-32. Section 5 theorem, a(n) = P_{u_i}(n).
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(1..6) = 2,4,8,12,18,23, then a(n) = 4*n for n>=7. [Allouche]
From Colin Barker, Sep 05 2020: (Start)
G.f.: (1 + x^2)*(1 + 2*x^3 - x^6) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>8.
(End)
EXAMPLE
For n=4, all length 4 subwords except 0000, 0101, 1010, 1111 occur, so a(4) = 16-4 = 12. (These words do not occur because odd terms in a paperfolding sequence alternate, so a subword wxyz must have w!=y or x!=z.)
MATHEMATICA
LinearRecurrence[{2, -1}, {1, 2, 4, 8, 12, 18, 23, 28, 32}, 100] (* Paolo Xausa, Feb 29 2024 *)
PROG
(PARI) Vec((1 + x^2)*(1 + 2*x^3 - x^6) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Sep 08 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kevin Ryde, Aug 17 2020
STATUS
approved