login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336755
Primitive triples for integer-sided triangles whose sides a < b < c are in arithmetic progression.
8
2, 3, 4, 3, 4, 5, 3, 5, 7, 4, 5, 6, 5, 6, 7, 4, 7, 10, 5, 7, 9, 6, 7, 8, 5, 8, 11, 7, 8, 9, 5, 9, 13, 7, 9, 11, 8, 9, 10, 7, 10, 13, 9, 10, 11, 6, 11, 16, 7, 11, 15, 8, 11, 14, 9, 11, 13, 10, 11, 12, 7, 12, 17, 11, 12, 13, 7, 13, 19, 8, 13, 18, 9, 13, 17, 10, 13, 16, 11, 13, 15, 12, 13, 14
OFFSET
1,1
COMMENTS
The triples are displayed in increasing order of perimeter (equivalently in increasing order of middle side) and if perimeters coincide then by increasing order of the smallest side; also, each triple (a, b, c) is in increasing order.
When b is prime, all the corresponding triples in A336750 are primitive triples.
The only right integer triangle in the data corresponds to the triple (3, 4, 5).
The number of primitive such triangles whose middle side = b is equal to A023022(b) for b >= 3.
For all the triples (primitive or not), miscellaneous properties and references, see A336750.
LINKS
EXAMPLE
The table begins:
2, 3, 4;
3, 4, 5;
3, 5, 7;
4, 5, 6;
5, 6, 7;
4, 7, 10;
5, 7, 9;
6, 7, 8;
The smallest such primitive triple is (2, 3, 4).
The only triangle with perimeter = 12 corresponds to the Pythagorean triple: (3, 4, 5).
There exist two triangles with perimeter = 15 corresponding to triples (3, 5, 7) and (4, 5, 6).
There exists only one primitive triangle with perimeter = 18 whose triple is (5, 6, 7), because (4, 6, 8) is not a primitive triple.
MAPLE
for b from 3 to 20 do
for a from b-floor((b-1)/2) to b-1 do
c := 2*b - a;
if gcd(a, b)=1 and gcd(b, c)=1 then print(a, b, c); end if;
end do;
end do;
MATHEMATICA
Select[Flatten[Table[{a, b, 2*b-a}, {b, 3, 20}, {a, b-Floor[(b-1)/2], b-1}], 1], GCD @@ # == 1 &] (* Paolo Xausa, Feb 28 2024 *)
PROG
(PARI) tabf(nn) = {for (b = 3, nn, for (a = b-floor((b-1)/2), b-1, my(c = 2*b - a); if (gcd([a, b, c]) == 1, print(a, " ", b, " ", c); ); ); ); } \\ Michel Marcus, Sep 08 2020
CROSSREFS
Cf. A336750 (triples, primitive or not), this sequence (primitive triples), A336756 (perimeter of primitive triangles), A336757 (number of such primitive triangles whose perimeter = n).
Cf. A103606 (similar for primitive Pythagorean triples).
Cf. A023022.
Sequence in context: A205554 A373579 A336750 * A214613 A364801 A325933
KEYWORD
nonn,tabf
AUTHOR
Bernard Schott, Sep 07 2020
STATUS
approved