login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336754
Perimeters in increasing order of integer-sided triangles whose sides a < b < c are in arithmetic progression.
7
9, 12, 15, 15, 18, 18, 21, 21, 21, 24, 24, 24, 27, 27, 27, 27, 30, 30, 30, 30, 33, 33, 33, 33, 33, 36, 36, 36, 36, 36, 39, 39, 39, 39, 39, 39, 42, 42, 42, 42, 42, 42, 45, 45, 45, 45, 45, 45, 45, 48, 48, 48, 48, 48, 48, 48, 51, 51, 51, 51, 51, 51, 51, 51
OFFSET
1,1
COMMENTS
Equivalently: perimeters of integer-sided triangles such that b = (a+c)/2 with a < c.
As perimeter = 3 * middle side, these perimeters p are all multiple of 3, and each term p appears floor((p-3)/6) = A004526((p-3)/3) consecutively.
For each perimeter = 12*k with k>0, there exists one right integer triangle whose triple is (3k, 4k, 5k).
For the corresponding primitive triples, miscellaneous properties and references, see A336750.
REFERENCES
V. Lespinard and R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.
FORMULA
a(n) = A336750(n, 1) + A336750(n, 2) + A336750(n, 3).
a(n) = 3 * A307136(n).
EXAMPLE
Perimeter = 9 only for the smallest triangle (2, 3, 4).
Perimeter = 12 only for Pythagorean triple (3, 4, 5).
Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
MAPLE
for b from 3 to 30 do
for a from b-floor((b-1)/2) to b-1 do
c := 2*b - a;
print(a+b+c);
end do;
end do;
MATHEMATICA
A336754[n_] := 3*Ceiling[2*Sqrt[n+Round[Sqrt[n]]]]; Array[A336754, 100] (* or *)
Flatten[Array[ConstantArray[3*#, Floor[(#-1)/2]] &, 19, 3]] (* Paolo Xausa, Feb 29 2024 *)
CROSSREFS
Cf. A004526.
Cf. A336750 (triples), A336751 (smallest side), A307136 (middle side), A336753 (largest side), this sequence (perimeter), A024164 (number of such triangles whose perimeter = n), A336755 (primitive triples).
Cf. A335897 (perimeters when angles A, B and C are in arithmetic progression).
Sequence in context: A259313 A170951 A044859 * A336756 A114306 A009188
KEYWORD
nonn
AUTHOR
Bernard Schott, Aug 31 2020
STATUS
approved