OFFSET
1,1
COMMENTS
Equivalently: perimeters of integer-sided triangles such that b = (a+c)/2 with a < c.
As perimeter = 3 * middle side, these perimeters p are all multiple of 3, and each term p appears floor((p-3)/6) = A004526((p-3)/3) consecutively.
For each perimeter = 12*k with k>0, there exists one right integer triangle whose triple is (3k, 4k, 5k).
For the corresponding primitive triples, miscellaneous properties and references, see A336750.
REFERENCES
V. Lespinard and R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-290 p. 121, André Desvigne.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000
EXAMPLE
Perimeter = 9 only for the smallest triangle (2, 3, 4).
Perimeter = 12 only for Pythagorean triple (3, 4, 5).
Perimeter = 15 for the two triples (3, 5, 7) and (4, 5, 6).
MAPLE
for b from 3 to 30 do
for a from b-floor((b-1)/2) to b-1 do
c := 2*b - a;
print(a+b+c);
end do;
end do;
MATHEMATICA
Flatten[Array[ConstantArray[3*#, Floor[(#-1)/2]] &, 19, 3]] (* Paolo Xausa, Feb 29 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Aug 31 2020
STATUS
approved