|
|
A214614
|
|
Irregular triangle read by rows: row n gives numbers <= n whose Collatz trajectory contains the trajectory of n.
|
|
2
|
|
|
1, 1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 4, 5, 7, 1, 2, 4, 8, 1, 2, 4, 5, 7, 8, 9, 1, 2, 4, 5, 8, 10, 1, 2, 4, 5, 8, 10, 11, 1, 2, 3, 4, 5, 6, 8, 10, 12, 1, 2, 4, 5, 8, 10, 13, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 1, 2, 4, 5, 8, 10, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Each row has A159999(n) elements and ends in n.
|
|
LINKS
|
|
|
EXAMPLE
|
Rows of triangle:
{1},
{1, 2},
{1, 2, 3},
{1, 2, 4},
{1, 2, 4, 5},
{1, 2, 3, 4, 5, 6},
{1, 2, 4, 5, 7},
{1, 2, 4, 8},
{1, 2, 4, 5, 7, 8, 9},
{1, 2, 4, 5, 8, 10}
|
|
MATHEMATICA
|
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; f[n_] := Module[{c = Collatz[n]}, Select[c, # <= n &]]; t = Table[f[n], {n, 20}]; Flatten[t] (* T. D. Noe, Mar 07 2013 *)
|
|
PROG
|
(Haskell)
import Data.List (sort)
a214614 n k = a214614_tabf !! (n-1) (k-1)
a214614_row n = a214614_tabf !! (n-1)
a214614_tabf = zipWith f [1..] a070165_tabf where
f v ws = sort $ filter (<= v) ws
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|