login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214456
Expansion of b(q^2) * (b(q) + 2 * b(q^4)) / 3 in powers of q where b() is a cubic AGM theta function.
2
1, -1, -3, 5, -3, -6, 15, -8, -3, 23, -18, -12, 15, -14, -24, 30, -3, -18, 69, -20, -18, 40, -36, -24, 15, -31, -42, 77, -24, -30, 90, -32, -3, 60, -54, -48, 69, -38, -60, 70, -18, -42, 120, -44, -36, 138, -72, -48, 15, -57, -93, 90, -42, -54, 231, -72, -24, 100
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (9 * phi(q^3)^4 - phi(q)^4) / 8 = phi(q) * (psi(-q) * chi(q^3))^3 = psi(-q)^4 * (chi(q) * chi(q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^2)^2 * eta(q^4) * eta(q^6)^6 / ( eta(q^3) * eta(q^12))^3 in powers of q.
Euler transform of period 12 sequence [ -1, -3, 2, -4, -1, -6, -1, -4, 2, -3, -1, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 36 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A214361.
a(n) = -b(n) where b() is multiplicative with b(2^e) = 3 if e>0, b(3^e) = 4 - 3^(e+1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^(6*k-3))^3 / (1 + x^(2*k-1)).
a(n) = (-1)^n * A118271(n). a(2*n) = a(4*n) = A131943(n). a(2*n + 1) = -A134077(n).
EXAMPLE
1 - q - 3*q^2 + 5*q^3 - 3*q^4 - 6*q^5 + 15*q^6 - 8*q^7 - 3*q^8 + 23*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (9 EllipticTheta[ 3, 0, q^3]^4 - EllipticTheta[ 3, 0, q]^4) / 8, {q, 0, n}]
a[ n_] := SeriesCoefficient[ QPochhammer[q^2]^4 QPochhammer[-q^3, q^6]^3 /QPochhammer[-q, q^2], {q, 0, n}]
a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2] QPochhammer[ -q^3, q^6])^3 EllipticTheta[ 2, 0, (-q)^(1/2)]^4 / (16 (-q)^(1/2)), {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^4 + A) * eta(x^6 + A)^6 / ( eta(x^3 + A) * eta(x^12 + A))^3, n))}
(PARI) {a(n) = if( n<1, n==0, -sigma(n) + if( n%3==0, 9 * sigma(n/3)) + if( n%4==0, 4 * sigma(n/4)) + if( n%12==0, -36 * sigma(n/12)))}
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 18 2012
STATUS
approved