login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214458
Let S_3(n) denote difference between multiples of 3 in interval [0,n) with even and odd binary digit sums. Then a(n)=(-1)^A000120(n)*(S_3(n)-3*S_3(floor(n/4))).
2
0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 0, 1, -1, 1, -2, -2, 2, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, -1, 1, 1
OFFSET
0,14
COMMENTS
In 1969, D. J. Newman (see the reference) proved L. Moser's conjecture that difference between numbers of multiples of 3 with even and odd binary digit sums in interval [0,x] is always positive. This fact is known as Moser-Newman phenomenon.
Theorem: The sequence is periodic with period of length 24.
LINKS
J. Coquet, A summation formula related to the binary digits, Inventiones Mathematicae 73 (1983), pp. 107-115.
D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
FORMULA
Recursion for evaluation S_3(n): S_3(n)=3*S_3(floor(n/4))+(-1)^A000120(n)*a(n). As a corollary, we have |S_3(n)-3*S_3(n/4)|<=2.
CROSSREFS
Sequence in context: A237452 A132784 A180834 * A133873 A163326 A028953
KEYWORD
sign,base
AUTHOR
STATUS
approved