OFFSET
0,6
COMMENTS
A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
Wikipedia, Young tableau
FORMULA
a(n) ~ c * 8^n / n^4, where c = 0.250879571... - Vaclav Kotesovec, Sep 06 2017
EXAMPLE
a(5) = 7:
[1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7]
[2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8]
[3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13]
[4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14]
[5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].
MAPLE
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([3$n], 0):
seq(a(n), n=0..25);
MATHEMATICA
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, {i -> l[[i]] - 1}], i], 0], {i, 1, n}]]]; a[n_] := If[n < 1, 1, b[Array[3&, n], 0]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 13 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 18 2012
STATUS
approved