login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214459
Number of n X 3 nonconsecutive chess tableaux.
4
1, 0, 0, 1, 1, 7, 27, 128, 640, 3351, 18313, 103404, 600538, 3571717, 21683185, 134005373, 841259885, 5355078350, 34512405410, 224908338137, 1480420941781, 9833512593113, 65860442383487, 444453988418791, 3020274890688447, 20656019108074552, 142107550142684602
OFFSET
0,6
COMMENTS
A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (terms 0..70 from Alois P. Heinz)
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
Wikipedia, Young tableau
FORMULA
a(n) ~ c * 8^n / n^4, where c = 0.250879571... - Vaclav Kotesovec, Sep 06 2017
EXAMPLE
a(5) = 7:
[1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7]
[2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8]
[3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13]
[4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14]
[5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].
MAPLE
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l);
`if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
a:= n-> b([3$n], 0):
seq(a(n), n=0..25);
MATHEMATICA
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, {i -> l[[i]] - 1}], i], 0], {i, 1, n}]]]; a[n_] := If[n < 1, 1, b[Array[3&, n], 0]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 13 2017, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A214088.
Sequence in context: A267365 A034536 A283538 * A179597 A295209 A151496
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 18 2012
STATUS
approved