login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 3 nonconsecutive chess tableaux.
4

%I #32 Oct 05 2018 20:08:37

%S 1,0,0,1,1,7,27,128,640,3351,18313,103404,600538,3571717,21683185,

%T 134005373,841259885,5355078350,34512405410,224908338137,

%U 1480420941781,9833512593113,65860442383487,444453988418791,3020274890688447,20656019108074552,142107550142684602

%N Number of n X 3 nonconsecutive chess tableaux.

%C A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.

%H Vaclav Kotesovec, <a href="/A214459/b214459.txt">Table of n, a(n) for n = 0..200</a> (terms 0..70 from Alois P. Heinz)

%H T. Y. Chow, H. Eriksson and C. K. Fan, <a href="http://www.combinatorics.org/Volume_11/Abstracts/v11i2a3.html">Chess tableaux</a>, Elect. J. Combin., 11 (2) (2005), #A3.

%H Jonas Sjöstrand, <a href="https://arxiv.org/abs/math/0309231v3">On the sign-imbalance of partition shapes</a>, arXiv:math/0309231v3 [math.CO], 2005.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%F a(n) ~ c * 8^n / n^4, where c = 0.250879571... - _Vaclav Kotesovec_, Sep 06 2017

%e a(5) = 7:

%e [1 6 11] [1 4 11] [1 6 9] [1 4 9] [1 4 7] [1 4 7] [1 4 7]

%e [2 7 12] [2 5 12] [2 7 10] [2 5 10] [2 5 10] [2 5 10] [2 5 8]

%e [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 8 13] [3 6 13] [3 10 13]

%e [4 9 14] [6 9 14] [4 11 14] [6 11 14] [6 11 14] [8 11 14] [6 11 14]

%e [5 10 15] [7 10 15] [5 12 15] [7 12 15] [9 12 15] [9 12 15] [9 12 15].

%p b:= proc(l, t) option remember; local n, s;

%p n, s:= nops(l), add(i, i=l);

%p `if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>

%p `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))

%p end:

%p a:= n-> b([3$n], 0):

%p seq(a(n), n=0..25);

%t b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, {i -> l[[i]] - 1}], i], 0], {i, 1, n}]]]; a[n_] := If[n < 1, 1, b[Array[3&, n], 0]]; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 13 2017, after _Alois P. Heinz_ *)

%Y Column k=3 of A214088.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Jul 18 2012