login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212668 a(n) = (16/3)*(n+1)*n*(n-1) + 8*n^2 + 1. 6
9, 65, 201, 449, 841, 1409, 2185, 3201, 4489, 6081, 8009, 10305, 13001, 16129, 19721, 23809, 28425, 33601, 39369, 45761, 52809, 60545, 69001, 78209, 88201, 99009, 110665, 123201, 136649, 151041, 166409, 182785, 200201, 218689, 238281, 259009, 280905, 304001 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 32*n^5).
LINKS
FORMULA
a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^5(Pi*i/(2*n+1)) * sin(2*Pi*i/(2*n+1)).
G.f.: x*(9+29*x-5*x^2-x^3) / (1-x)^4. - Colin Barker, Nov 30 2015
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {9, 65, 201, 449}, 40] (* Vincenzo Librandi, Dec 01 2015 *)
CoefficientList[Series[x (9+29x-5x^2-x^3)/(1-x)^4, {x, 0, 40}], x] (* Harvey P. Dale, Mar 29 2023 *)
PROG
(PARI) a(n)=16*(n+1)*n*(n-1)/3+8*n^2+1 \\ Charles R Greathouse IV, Oct 07 2015
(PARI) Vec(x*(9+29*x-5*x^2-x^3)/(1-x)^4 + O(x^100)) \\ Colin Barker, Nov 30 2015
(Magma) [(16/3)*(n+1)*n*(n-1)+8*n^2+1: n in [1..40]]; // Vincenzo Librandi, Dec 01 2015
CROSSREFS
Sequence in context: A076287 A339997 A226929 * A020299 A250415 A237040
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:13 EST 2023. Contains 367612 sequences. (Running on oeis4.)