login
A212667
Numbers n such that the sum of digits of n equals the concatenation of the distinct prime divisors of n.
1
2, 3, 5, 7, 2401, 4913, 655360, 3906250, 6553600, 39062500, 41943040, 65536000, 390625000, 419430400, 655360000, 3906250000, 4194304000, 6553600000, 27512614111, 39062500000, 41943040000, 65536000000, 271818611107, 390625000000, 419430400000
OFFSET
1,1
COMMENTS
The sequence is infinite because 3906250 = 2*5^9 is in the sequence => 2^(1+p) * 5^(9+p) = 39062500….0 is also in the sequence.
The prime numbers of A046017 are included in this sequence. For example A046017(4) = 7 => 7^4 = 2401 is in this sequence.
EXAMPLE
655360 is in the sequence because 655360 = 2^17 * 5 => the concatenation of the prime divisors is the number 25 and 6+5+5+3+6+0 = 25.
MAPLE
with(numtheory):for n from 1 to 10^8 do: V:=convert(n, base, 10): n1:=nops(V): s1:=sum(‘V[m]’, ‘m’=1..n1):x:=factorset(n):n1:=nops(x): s:=0:s0:=0:for i from n1 by -1 to 1 do: a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:od: if s=s1 then print(n):else fi:od:
CROSSREFS
Cf. A046017.
Sequence in context: A224164 A224398 A066306 * A252357 A037948 A007659
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, May 23 2012
STATUS
approved