|
|
A224164
|
|
Prime numbers with m^2 digits that, if arranged in an m X m matrix, form m-digit reversible primes in each row and column and along the main diagonal.
|
|
4
|
|
|
2, 3, 5, 7, 1117, 1171, 7331, 131983991, 179907191, 179991179, 191199311, 191739971, 191797919, 199199311, 199709971, 199937971, 337353739, 373151113, 733353337, 797389337, 919311739, 971727179, 1193100992213191, 1193120192093911, 1193123793413719
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For m = 1, 2, 3, 4:
- number of terms with m^2 digits: 4, 3, 15, 86.
- smallest term with m^2 digits: 2, 1117, 131983991, 1193100992213191.
- largest term with m^2 digits: 7, 7331, 971727179, 9931722992931193.
Palindromic terms: 2, 3, 5, 7, 733353337, 971727179, ...
There are 1303816 terms with 25 digits, from 1119710007309831033317939 to 9979399989793939049937997, while the terms with 36 digits range from 111119100049100049150607134777979313 to 999931999983999983792293733331319919. - Giovanni Resta, Apr 05 2013
|
|
REFERENCES
|
Chris K. Caldwell, G. L. Honaker, Jr.: Prime Curios! The Dictionary of Prime Number Trivia. CreateSpace 2009, p. 219, and 229.
|
|
LINKS
|
|
|
EXAMPLE
|
a(5) = 1117 is the smallest 4-digit prime that if arranged in a 2 X 2 matrix yields in each row and column and along the main diagonal a number that is prime in both directions, i.e.,
11
17
-> 11 (4 times), 17 (3 times), 71 (3 times) are all reversible primes.
a(8) = 131983991 is the smallest 9-digit prime that if arranged in a 3 X 3 matrix yields in each row and column and along the main diagonal a number that is prime in both directions, i.e.,
131
983
991
-> 131 (4 times), 181, 199, 389, 983, 991 (each 2 times) are all reversible primes.
a(23) = 1193100992213191 is the smallest 16-digit prime that if arranged in a 4 X 4 matrix yields in each row, and column and along the main diagonal a prime in both directions, i.e.,
1193
1009
9221
3191
-> 1009, 1021 (2 times), 1193 (3 times), 1201 (2 times), 1229, 1913, 3191, 3911 (3 times), 9001, 9029, 9209, 9221 are all reversible primes.
|
|
MAPLE
|
# Maple program generating all 4-digit primes
M:={}: for a in [1, 3, 7, 9] do for b in [1, 3, 7, 9] do if isprime(10*a+b) and isprime(10*b+a) then for c in [1, 3, 7, 9] do for d in [1, 3, 7, 9] do if isprime(10*c+d) and isprime(10*d+c) and isprime(10*a+c) and isprime(10*c+a) and isprime(10*b+d) and isprime(10*d+b) and isprime(10*a+d) and isprime(10*d+a) then S:=[a, b, c, d]: if isprime(add(S[j]*10^(4-j), j=1..4)) then M:={op(M), add(S[j]*10^(4-j), j=1..4)}: fi: fi: od: od: fi: od: od: M;
# Maple program generating all 9-digit primes
M:={}: for d in [1, 3, 7, 9] do for e from 0 to 9 do for f in [1, 3, 7, 9] do if isprime(100*d+10*e+f) and isprime(100*f+10*e+d) then for a in [1, 3, 7, 9] do for b in [1, 3, 7, 9] do for c in [1, 3, 7, 9] do if isprime(100*a+10*b+c) and isprime(100*c+10*b+a) then for g in [1, 3, 7, 9] do for h in [1, 3, 7, 9] do for i in [1, 3, 7, 9] do if isprime(100*g+10*h+i) and isprime(100*i+10*h+g) and isprime(100*a+10*d+g) and isprime(100*g+10*d+a) and isprime(100*b+10*e+h) and isprime(100*h+10*e+b) and isprime(100*c+10*f+i) and isprime(100*i+10*f+c) and isprime(100*a+10*e+i) and isprime(100*i+10*e+a) then S:=[a, b, c, d, e, f, g, h, i]: if isprime(add(S[j]*10^(9-j), j=1..9)) then M:={op(M), add(S[j]*10^(9-j), j=1..9)}: fi: fi: od: od: od: fi: od: od: od: fi: od: od: od: M;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|