login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212279
A002144(n+1)^2+1 mod A002144(n), where A002144 are the Pythagorean primes (p=4k+1).
0
0, 0, 0, 28, 17, 39, 4, 72, 79, 65, 17, 65, 17, 29, 145, 65, 84, 65, 145, 17, 109, 17, 65, 0, 145, 65, 17, 145, 88, 17, 64, 145, 17, 28, 257, 65, 17, 65, 145, 145, 257, 65, 17, 269, 145, 401, 257, 145, 65, 257, 65, 145, 17, 577, 145, 65, 145, 17, 577, 65, 577
OFFSET
1,4
COMMENTS
Motivated by the fact that the first terms are zero (which is of course a coincidence). Other values (17, 65, 145, 257...) occur much more frequently.
Conjecture: a(n) = A082073(n)^2 + 1 for all n > 159. - Charles R Greathouse IV, May 13 2012
LINKS
K. Rose, Law of small numbers, primenumbers group, May 2012.
EXAMPLE
5^2+1 = 2*13, 13^2+1 = 10*17, 17^2=10*29; therefore a(1)=a(2)=a(3)=0.
29^2+1 = 22*37+28, therefore a(4)=28.
Kermit Rose's post in the primenumbers Yahoo group:
>>> (5**2+1)%13
0
>>> (13**2+1)%17
0
>>> (17**2+1)%29
0
Looks remarkable.
>>> (29**2+1)%37
28.
Oops: Break in the pattern. Another illustration of the law of small numbers. :)
PROG
(PARI) o=5; forprime(p=o+1, 900, p%4==1||next; print1((o^2+1)%o=p", "))
CROSSREFS
Sequence in context: A033970 A033348 A040759 * A040758 A196031 A196028
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 13 2012
STATUS
approved