login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212280 G.f. A(x)=1/(1-F(x)), where F(F(x)) = (1 - sqrt(1-16*x))/8. 1
1, 1, 3, 17, 131, 1177, 11531, 119201, 1276771, 14015401, 156585211, 1772626673, 20275611347, 233912585849, 2718842818923, 31816917837377, 374657837729987, 4436890509548617 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

F(x) is the generating function of A213422.

LINKS

Table of n, a(n) for n=0..17.

Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986

FORMULA

a(n) = sum(m=1..n, T(n,m)) for n>0, where T(n,m)= 1 if n=m, otherwise = (m *4^(n-m) *binomial(2*n-m-1,n-1)/n - sum_{i=m+1..n-1} T(n,i)*T(i,m) )/2.

MAPLE

T := proc(n, m)

    if n = m then

        1 ;

    else

        m*4^(n-m)*binomial(2*n-m-1, n-1)/n ;

        %-add(procname(n, i)*procname(i, m), i=m+1..n-1) ;

        %/2 ;

    end if;

end proc:

A212280 := proc(n)

    if n = 0 then

        1

    else

        add(T(n, m), m=1..n) ;

    end if;

end proc: # R. J. Mathar, Mar 04 2013

MATHEMATICA

Clear[t]; t[n_, m_] := t[n, m] = 1/2*((m*4^(n-m)*Binomial[2*n-m-1, n-1]/n - Sum[ t[n, i]*t[i, m], {i, m+1, n-1}])); t[n_, n_] = 1; a[n_] := Sum[t[n, m], {m, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-Fran├žois Alcover, Feb 25 2013, from formula *)

PROG

(Maxima)

Solve(k):=block([Tmp, i, j], array(Tmp, k, k), for i:0 thru k do for j:0 thru k do Tmp[i, j]:a,

T(n, m):=if Tmp[n, m]=a then (if n=m then (Tmp[n, n]:1) else (Tmp[n, m]:(1/2*((m*4^(n-m)*binomial(2*n-m-1, n-1))/n-sum(T(n, i)*T(i, m), i, m+1, n-1))))) else Tmp[n, m],  makelist(sum(T(j, i), i, 1, j), j, 1, k));

CROSSREFS

Cf. A213422.

Sequence in context: A006759 A073513 A074524 * A307680 A305819 A163684

Adjacent sequences:  A212277 A212278 A212279 * A212281 A212282 A212283

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Feb 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 05:01 EDT 2019. Contains 324229 sequences. (Running on oeis4.)