login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212280
G.f. A(x)=1/(1-F(x)), where F(F(x)) = (1 - sqrt(1-16*x))/8.
1
1, 1, 3, 17, 131, 1177, 11531, 119201, 1276771, 14015401, 156585211, 1772626673, 20275611347, 233912585849, 2718842818923, 31816917837377, 374657837729987, 4436890509548617
OFFSET
0,3
COMMENTS
F(x) is the generating function of A213422.
LINKS
FORMULA
a(n) = sum(m=1..n, T(n,m)) for n>0, where T(n,m)= 1 if n=m, otherwise = (m *4^(n-m) *binomial(2*n-m-1,n-1)/n - sum_{i=m+1..n-1} T(n,i)*T(i,m) )/2.
MAPLE
T := proc(n, m)
if n = m then
1 ;
else
m*4^(n-m)*binomial(2*n-m-1, n-1)/n ;
%-add(procname(n, i)*procname(i, m), i=m+1..n-1) ;
%/2 ;
end if;
end proc:
A212280 := proc(n)
if n = 0 then
1
else
add(T(n, m), m=1..n) ;
end if;
end proc: # R. J. Mathar, Mar 04 2013
MATHEMATICA
Clear[t]; t[n_, m_] := t[n, m] = 1/2*((m*4^(n-m)*Binomial[2*n-m-1, n-1]/n - Sum[ t[n, i]*t[i, m], {i, m+1, n-1}])); t[n_, n_] = 1; a[n_] := Sum[t[n, m], {m, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 25 2013, from formula *)
PROG
(Maxima)
Solve(k):=block([Tmp, i, j], array(Tmp, k, k), for i:0 thru k do for j:0 thru k do Tmp[i, j]:a,
T(n, m):=if Tmp[n, m]=a then (if n=m then (Tmp[n, n]:1) else (Tmp[n, m]:(1/2*((m*4^(n-m)*binomial(2*n-m-1, n-1))/n-sum(T(n, i)*T(i, m), i, m+1, n-1))))) else Tmp[n, m], makelist(sum(T(j, i), i, 1, j), j, 1, k));
CROSSREFS
Cf. A213422.
Sequence in context: A006759 A073513 A074524 * A360581 A307680 A305819
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 14 2013
STATUS
approved