login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211866
(9^n - 5) / 4.
5
1, 19, 181, 1639, 14761, 132859, 1195741, 10761679, 96855121, 871696099, 7845264901, 70607384119, 635466457081, 5719198113739, 51472783023661, 463255047212959, 4169295424916641, 37523658824249779, 337712929418248021, 3039416364764232199, 27354747282878089801
OFFSET
1,2
COMMENTS
(2*n, a(n)) are the solutions of Diophantine equation 3^x = 4*y + 5.
Second bisection of A080926. - Bruno Berselli, Feb 12 2013
Sum of n-th row of triangle of powers of 9: 1; 9 1 9; 81 9 1 9 81; 729 81 9 1 9 81 729; ... - Philippe Deléham, Feb 24 2014
REFERENCES
Jiri Herman, Radan Kucera and Jaromir Simsa, Equations and Inequalities, Springer (2000), p. 225 (5.3).
FORMULA
G.f.: x*(1+9*x)/((1-x)*(1-9*x)). - Bruno Berselli, Feb 12 2013
a(n)-a(n-1) = A000792(6n-4). - Bruno Berselli, Feb 12 2013
a(n) = 9*a(n-1) + 10, a(1) = 1. - Philippe Deléham, Feb 24 2014
a(n) = -A084222(2*n). - Philippe Deléham, Feb 24 2014
EXAMPLE
a(1) = 1;
a(2) = 9 + 1 + 9 = 19;
a(3) = 81 + 9 + 1 + 9 + 81 = 181;
a(4) = 729 + 81 + 9 + 1 + 9 + 81 + 729 = 1639; etc. - Philippe Deléham, Feb 24 2014
MAPLE
A211866:=n->(9^n-5)/4; seq(A211866(n), n=1..50); # Wesley Ivan Hurt, Nov 13 2013
MATHEMATICA
(9^Range[25] - 5)/4 (* Bruno Berselli, Feb 12 2013 *)
CoefficientList[Series[(1 + 9 x)/((1 - x) (1 - 9 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
PROG
(Haskell)
a211866 = (flip div 4) . (subtract 5) . (9 ^)
(Maxima) makelist((9^n-5)/4, n, 1, 30); /* Martin Ettl, Feb 12 2013 */
(Magma) I:=[1, 19]; [n le 2 select I[n] else 10*Self(n-1)-9*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 26 2014
(PARI) a(n)=(9^n-5)/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 12 2013
STATUS
approved