login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210729
a(n) = a(n-1) + a(n-2) + n + 3 with n>1, a(0)=1, a(1)=2.
2
1, 2, 8, 16, 31, 55, 95, 160, 266, 438, 717, 1169, 1901, 3086, 5004, 8108, 13131, 21259, 34411, 55692, 90126, 145842, 235993, 381861, 617881, 999770, 1617680, 2617480, 4235191, 6852703, 11087927, 17940664, 29028626, 46969326, 75997989, 122967353
OFFSET
0,2
FORMULA
G.f.: (1-x+4*x^2-3*x^3)/((1-x-x^2)*(1-x)^2).
a(n) = 3*Fibonacci(n+1)+2*Fibonacci(n+3)-n-6. - Vaclav Kotesovec, May 13 2012
a(n) = 2*Lucas(n+2) + Fibonacci(n+1) - (n+6). - G. C. Greubel, Jul 09 2019
MATHEMATICA
Table[3*Fibonacci[n+1]+2*Fibonacci[n+3]-n-6, {n, 0, 40}] (* Vaclav Kotesovec, May 13 2012 *)
PROG
(Python)
prpr, prev = 1, 2
for n in range(2, 99):
current = prev+prpr+n+3
print(prpr, end=', ')
prpr = prev
prev = current
(Magma) [3*Fibonacci(n+1)+2*Fibonacci(n+3)-n-6: n in [0..40]]; // Vincenzo Librandi, Jul 18 2013
(PARI) vector(40, n, n--; f=fibonacci; 2*f(n+3)+3*f(n+1)-n-6) \\ G. C. Greubel, Jul 09 2019
(Sage) f=fibonacci; [2*f(n+3)+3*f(n+1)-n-6 for n in (0..40)] # G. C. Greubel, Jul 09 2019
(GAP) F:=Fibonacci;; List([0..40], n-> 2*F(n+3)+3*F(n+1)-n-6); # G. C. Greubel, Jul 09 2019
CROSSREFS
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf. A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf. A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf. A210728: a(n)=a(n-1)+a(n-2)+n+2, a(0)=1,a(1)=2.
Sequence in context: A136514 A077071 A187216 * A294534 A294542 A294553
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 10 2012
STATUS
approved