|
|
A136514
|
|
Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of radius n.
|
|
3
|
|
|
0, 2, 8, 16, 30, 44, 60, 82, 108, 138, 166, 196, 238, 278, 324, 366, 416, 468, 526, 588, 644, 714, 780, 848, 930, 1008, 1090, 1170, 1256, 1350, 1438, 1540, 1638, 1744, 1856, 1954, 2072, 2180, 2310, 2432, 2548, 2678, 2808, 2950, 3090, 3220, 3366, 3510, 3664
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Lim_{n -> oo} a(n)/(n^2) -> Pi/8.
a(n) = 2 * Sum_{k=1..n-1} floor(sqrt(n^2 - k^2)).
|
|
EXAMPLE
|
a(2) = 2 because a circle centered at the origin and of radius 2 encloses (-1,1) and (1,1) in the upper half plane.
|
|
MATHEMATICA
|
Table[2*Sum[Floor[Sqrt[n^2 -k^2]], {k, n-1}], {n, 100}]
|
|
PROG
|
(Magma)
A136514:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt(n^2-j^2)): j in [1..n-1]]) >;
(SageMath)
def A136514(n): return 2*sum(isqrt(n^2-k^2) for k in range(1, n))
(PARI) a(n) = 2*sum(k=1, n-1, sqrtint(n^2-k^2)); \\ Michel Marcus, Jul 27 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008
|
|
STATUS
|
approved
|
|
|
|