login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136513
Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of diameter n.
5
0, 0, 2, 2, 6, 8, 12, 16, 26, 30, 38, 44, 56, 60, 74, 82, 96, 108, 128, 138, 154, 166, 188, 196, 220, 238, 262, 278, 304, 324, 344, 366, 398, 416, 452, 468, 506, 526, 562, 588, 616, 644, 686, 714, 754, 780, 824, 848, 894, 930, 976, 1008, 1056, 1090, 1134, 1170
OFFSET
1,3
LINKS
FORMULA
Lim_{n -> oo} a(n)/(n^2) -> Pi/8.
a(n) = 2 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
a(n) = 2 * A136483(n).
a(n) = (1/2) * A136485(n).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (2 * (1 - x)). - Ilya Gutkovskiy, Nov 24 2021
EXAMPLE
a(3) = 2 because a circle centered at the origin and of radius 3/2 encloses (-1,1) and (1,1) in the upper half plane.
MATHEMATICA
Table[2*Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k, Floor[n/2]}], {n, 100}]
PROG
(Magma)
A136513:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
[A136513(n): n in [1..100]]; // G. C. Greubel, Jul 27 2023
(SageMath)
def A136513(n): return 2*sum(isqrt((n/2)^2-k^2) for k in range(1, (n//2)+1))
[A136513(n) for n in range(1, 101)] # G. C. Greubel, Jul 27 2023
(PARI) a(n) = 2*sum(k=1, n\2, sqrtint((n/2)^2-k^2)); \\ Michel Marcus, Jul 27 2023
CROSSREFS
Alternating merge of A136514 and A136515.
Sequence in context: A320067 A248823 A284616 * A365662 A214932 A322132
KEYWORD
easy,nonn
AUTHOR
Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008
STATUS
approved