Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jul 28 2023 17:13:24
%S 0,0,2,2,6,8,12,16,26,30,38,44,56,60,74,82,96,108,128,138,154,166,188,
%T 196,220,238,262,278,304,324,344,366,398,416,452,468,506,526,562,588,
%U 616,644,686,714,754,780,824,848,894,930,976,1008,1056,1090,1134,1170
%N Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of diameter n.
%H G. C. Greubel, <a href="/A136513/b136513.txt">Table of n, a(n) for n = 1..1000</a>
%F Lim_{n -> oo} a(n)/(n^2) -> Pi/8.
%F a(n) = 2 * Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
%F a(n) = 2 * A136483(n).
%F a(n) = (1/2) * A136485(n).
%F a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (2 * (1 - x)). - _Ilya Gutkovskiy_, Nov 24 2021
%e a(3) = 2 because a circle centered at the origin and of radius 3/2 encloses (-1,1) and (1,1) in the upper half plane.
%t Table[2*Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}]
%o (Magma)
%o A136513:= func< n | n eq 1 select 0 else 2*(&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >;
%o [A136513(n): n in [1..100]]; // _G. C. Greubel_, Jul 27 2023
%o (SageMath)
%o def A136513(n): return 2*sum(isqrt((n/2)^2-k^2) for k in range(1,(n//2)+1))
%o [A136513(n) for n in range(1,101)] # _G. C. Greubel_, Jul 27 2023
%o (PARI) a(n) = 2*sum(k=1, n\2, sqrtint((n/2)^2-k^2)); \\ _Michel Marcus_, Jul 27 2023
%Y Alternating merge of A136514 and A136515.
%Y Cf. A136483, A136485.
%K easy,nonn
%O 1,3
%A Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008