login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001182
Number of cells of square lattice of edge 1/n inside quadrant of unit circle centered at 0.
20
0, 1, 4, 8, 15, 22, 30, 41, 54, 69, 83, 98, 119, 139, 162, 183, 208, 234, 263, 294, 322, 357, 390, 424, 465, 504, 545, 585, 628, 675, 719, 770, 819, 872, 928, 977, 1036, 1090, 1155, 1216, 1274, 1339, 1404, 1475, 1545, 1610, 1683, 1755, 1832, 1911, 1992, 2072
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} floor(sqrt(n^2-k^2)). - Horst Kraemer (horst.kraemer(AT)epost.de) Apr 07 2004
a(n) = A261849(2*n)/4 = (A281795(n)-A242118(n))/4. - Andrey Zabolotskiy, Jan 30 2017
a(n) = [x^(n^2)] (theta_3(x) - 1)^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
MATHEMATICA
Table[Sum[Floor@ Sqrt[n^2 - k^2], {k, n - 1}], {n, 52}] (* Michael De Vlieger, Jan 30 2017 *)
PROG
(Python)
from math import isqrt
def A001182(n): return sum(isqrt(k*((n<<1)-k)) for k in range(1, n)) # Chai Wah Wu, Jul 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Tihamer von Ghyczy (ghyczy(AT)esinet.net)
EXTENSIONS
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 19 2000
STATUS
approved