login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210728
a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=1, a(1)=2.
2
1, 2, 7, 14, 27, 48, 83, 140, 233, 384, 629, 1026, 1669, 2710, 4395, 7122, 11535, 18676, 30231, 48928, 79181, 128132, 207337, 335494, 542857, 878378, 1421263, 2299670, 3720963, 6020664, 9741659, 15762356, 25504049, 41266440, 66770525, 108037002, 174807565
OFFSET
0,2
FORMULA
G.f.: (1-x+3*x^2-2*x^3)/((1-x)^2*(1-x-x^2)). - Bruno Berselli, Jun 27 2012
a(n) = ((5+sqrt(5))*(1+sqrt(5))^(n+1)-(5-sqrt(5))*(1-sqrt(5))^(n+1))/(2^(n+1)*sqrt(5))-n-5. - Bruno Berselli, Jun 27 2012
a(n) = -n-5+A022112(n+1). R. J. Mathar, Jul 03 2012
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 2, a[n] == a[n - 1] + a[n - 2] + n + 2}, a, {n, 36}] (* Bruno Berselli, Jun 27 2012 *)
nxt[{n_, a_, b_}]:={n+1, b, a+b+n+3}; NestList[nxt, {1, 1, 2}, 40][[;; , 2]] (* Harvey P. Dale, Aug 26 2024 *)
CROSSREFS
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-5, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A168043: a(n)=a(n-1)+a(n-2)+n-3, a(0)=1,a(1)=2 (except first 2 terms).
Cf. A131269: a(n)=a(n-1)+a(n-2)+n-2, a(0)=1,a(1)=2.
Cf. A000126: a(n)=a(n-1)+a(n-2)+n-1, a(0)=1,a(1)=2.
Cf. A104161: a(n)=a(n-1)+a(n-2)+n, a(0)=1,a(1)=2 (except the first term).
Cf. A192969: a(n)=a(n-1)+a(n-2)+n+1, a(0)=1,a(1)=2.
Cf. A210729: a(n)=a(n-1)+a(n-2)+n+3, a(0)=1,a(1)=2.
Sequence in context: A014112 A227016 A268347 * A294533 A294541 A294564
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 10 2012
STATUS
approved