The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210394 a(n) = least integer m>1 such that m divides none of S_i!+S_j! with 0
 2, 3, 7, 11, 19, 31, 43, 67, 79, 101, 131, 163, 199, 241, 283, 331, 383, 443, 503, 571, 641, 719, 797, 877, 967, 1061, 1163, 1277, 1373, 1481, 1597, 1721, 1871, 1999, 2129, 2281, 2437, 2593, 2749, 2927, 3089, 3271, 3457, 3643, 3833, 4057, 4229, 4441, 4673, 4889 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS When n>1, we have S_n!+S_{n-1}!=0 (mod m) for all m=1,...,S_{n-1} and hence a(n)>S_{n-1}. Zhi-Wei Sun conjectured that a(n) is always a prime not exceeding S_n. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..225 Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812. EXAMPLE We have a(3)=7, since  m=7 divides none of 2!+(2+3)!,2!+(2+3+5)!,(2+3)!+(2+3+5)! but this fails for m=2,3,4,5,6. MATHEMATICA s[n_]:=s[n]=Sum[Prime[k], {k, 1, n}] f[n_]:=s[n]! R[n_, m_]:=Product[If[Mod[f[k]+f[j], m]==0, 0, 1], {k, 2, n}, {j, 1, k-1}] Do[Do[If[R[n, m]==1, Print[n, " ", m]; Goto[aa]], {m, Max[2, s[n-1]], s[n]}];    Print[n]; Label[aa]; Continue, {n, 1, 225}] CROSSREFS Cf. A000040, A210393, A210186, A210144, A208494, A208643, A207982. Sequence in context: A062576 A238686 A079739 * A211203 A158709 A180422 Adjacent sequences:  A210391 A210392 A210393 * A210395 A210396 A210397 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 03:11 EDT 2020. Contains 333339 sequences. (Running on oeis4.)