login
A210144
a(n) = least integer m>1 such that the product of the first k primes for k=1,...,n are pairwise distinct modulo m.
9
2, 3, 5, 11, 11, 23, 29, 37, 37, 41, 47, 47, 47, 47, 47, 73, 131, 131, 131, 131, 131, 151, 151, 151, 151, 199, 223, 223, 271, 271, 271, 281, 281, 281, 281, 281, 281, 281, 281, 281, 353, 353, 457, 457, 457, 457, 457, 457, 457, 457, 457, 641, 641, 641, 641, 641, 643, 643, 643, 643
OFFSET
1,1
COMMENTS
Conjecture: all the terms are primes and a(n)<n^2 for all n > 1.
LINKS
Jason Yuen, Table of n, a(n) for n = 1..10000 (first 1172 terms from Zhi-Wei Sun)
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From N. J. A. Sloane, Jun 13 2012
Zhi-Wei Sun, A function taking only prime values, a message to Number Theory List, Feb. 21, 2012.
Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
EXAMPLE
a(3)=5 because 2, 2*3=6, 2*3*5=30 are distinct modulo m=5 but not distinct modulo m=2,3,4.
MATHEMATICA
R[n_, m_]:=Union[Table[Mod[Product[Prime[j], {j, 1, k}], m], {k, 1, n}]]
Do[Do[If[Length[R[n, m]]==n, Print[n, " ", m]; Goto[aa]], {m, 2, Max[2, n^2]}];
Print[n]; Label[aa]; Continue, {n, 1, 1000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 17 2012
STATUS
approved