login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210395
Decimal expansion of continued fraction with quotients equal to Fermat numbers.
0
3, 1, 9, 7, 6, 7, 4, 9, 4, 4, 5, 8, 7, 6, 5, 5, 9, 3, 6, 4, 1, 1, 6, 2, 8, 9, 0, 2, 1, 7, 5, 2, 4, 4, 8, 0, 2, 1, 2, 7, 8, 3, 5, 2, 5, 4, 1, 4, 9, 1, 5, 7, 1, 9, 2, 5, 7, 5, 1, 4, 9, 3, 1, 6, 9, 9, 2, 9, 2, 8, 9, 3, 2, 1, 5, 9, 9, 2, 6, 8, 0, 0, 7, 9, 9, 5, 5, 7, 8, 7, 2, 6
OFFSET
1,1
REFERENCES
A. Ya. Khinchin, Continued Fractions, Dover Publications, 1997.
M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer, 2011.
FORMULA
a(0).a(1)a(2)a(3)a(4)a(5)... = F_0 + 1/(F_1 + 1/(F_2 + 1/(F_3 + 1/(F_4 + ...)))) = [F_0,F_1,F_2,F_3,F_4,...] where a(0).a(1)a(2)a(3)a(4)... is a decimal representation of the continued fraction [F_0,F_1,F_2,F_3,F_4,...] where F_0, F_1,... are Fermat numbers.
EXAMPLE
3.19767494... = 3 + 1/(5 + 1/(17 + 1/(257 + 1/(65537 + ...))))
MATHEMATICA
FromContinuedFraction[{3, 5, 17, 257, 65537, 4294967297, 18446744073709551617}] (* for better precision, enter next Fermat numbers *)
PROG
(PARI) s=3; forstep(n=log(default(realprecision)*log(10)\log(2))\log(2), 1, -1, s=1/(2.^(2^n)+s+1)); s \\ Charles R Greathouse IV, Mar 21 2012
CROSSREFS
Cf. A000215.
Sequence in context: A143495 A327997 A245789 * A019770 A136320 A201840
KEYWORD
nonn,cons
AUTHOR
Algirdas Javtokas, Mar 21 2012
EXTENSIONS
Offset changed by Bruno Berselli, May 14 2012
STATUS
approved