The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211203 Prime numbers p such that p-1 divides (2^(p-1)+1)*(2^p-2). 3
 2, 3, 7, 11, 19, 31, 43, 79, 127, 151, 163, 211, 251, 271, 311, 331, 379, 487, 547, 631, 751, 811, 883, 991, 1051, 1171, 1231, 1459, 1471, 1831, 1951, 1999, 2251, 2311, 2531, 2647, 2731, 2791, 2971, 3079, 3331, 3511, 3631, 3691, 3823, 3943, 4051, 4447, 4651 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is also the set of primes such that n^(4^(p-1)) is congruent to n or -n modulo p. Prime p>2 is in this sequence iff (p-1)/2 belongs to A014957. - Max Alekseyev, Dec 26 2017 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..204 from Philip A. Hoskins) MAPLE A211203:=proc(q) local n; for n from 1 to q do   if type((2^(2*ithprime(n)-1)-2)/(ithprime(n)-1), integer) then print(ithprime(n)); fi; od; end: A211203(10000000); # Paolo P. Lava, Feb 18 2013 MATHEMATICA Select[Prime[Range[1000]], Mod[1/2*(2^# + 2)*(2^# - 2), # - 1] == 0 &] PROG (Python) from sympy import primerange A211203_list = [p for p in primerange(1, 10**6) if p == 2 or p == 3 or pow(2, 2*p-1, p-1) == 2] # Chai Wah Wu, Mar 25 2021 (PARI) is(p) = lift((Mod(2, p-1)^(p-1)+1)*(Mod(2, p-1)^p-2))==0 \\ David A. Corneth, Mar 25 2021 CROSSREFS Cf. A069051 (primes p such that p - 1 divides 2^p - 2) Cf. A211349 (primes p such that p - 1 divides 2^p + 2) Sequence in context: A238686 A079739 A210394 * A158709 A180422 A055502 Adjacent sequences:  A211200 A211201 A211202 * A211204 A211205 A211206 KEYWORD nonn AUTHOR Philip A. Hoskins, Feb 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 07:53 EDT 2021. Contains 343879 sequences. (Running on oeis4.)