login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211203
Prime numbers p such that p-1 divides (2^(p-1)+1)*(2^p-2).
3
2, 3, 7, 11, 19, 31, 43, 79, 127, 151, 163, 211, 251, 271, 311, 331, 379, 487, 547, 631, 751, 811, 883, 991, 1051, 1171, 1231, 1459, 1471, 1831, 1951, 1999, 2251, 2311, 2531, 2647, 2731, 2791, 2971, 3079, 3331, 3511, 3631, 3691, 3823, 3943, 4051, 4447, 4651
OFFSET
1,1
COMMENTS
This is also the set of primes such that n^(4^(p-1)) is congruent to n or -n modulo p.
Prime p>2 is in this sequence iff (p-1)/2 belongs to A014957. - Max Alekseyev, Dec 26 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..204 from Philip A. Hoskins)
MAPLE
A211203:=proc(q)
local n;
for n from 1 to q do
if type((2^(2*ithprime(n)-1)-2)/(ithprime(n)-1), integer) then print(ithprime(n));
fi; od; end:
A211203(10000000); # Paolo P. Lava, Feb 18 2013
MATHEMATICA
Select[Prime[Range[1000]], Mod[1/2*(2^# + 2)*(2^# - 2), # - 1] == 0 &]
PROG
(Python)
from sympy import primerange
A211203_list = [p for p in primerange(1, 10**6) if p == 2 or p == 3 or pow(2, 2*p-1, p-1) == 2] # Chai Wah Wu, Mar 25 2021
(PARI) is(p) = lift((Mod(2, p-1)^(p-1)+1)*(Mod(2, p-1)^p-2))==0 \\ David A. Corneth, Mar 25 2021
CROSSREFS
Cf. A069051 (primes p such that p - 1 divides 2^p - 2)
Cf. A211349 (primes p such that p - 1 divides 2^p + 2)
Sequence in context: A238686 A079739 A210394 * A350402 A158709 A180422
KEYWORD
nonn
AUTHOR
Philip A. Hoskins, Feb 06 2013
STATUS
approved