login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209564
Triangle of coefficients of polynomials v(n,x) jointly generated with A209559; see the Formula section.
3
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 5, 11, 5, 1, 2, 5, 13, 21, 6, 1, 2, 5, 13, 32, 36, 7, 1, 2, 5, 13, 34, 72, 57, 8, 1, 2, 5, 13, 34, 87, 148, 85, 9, 1, 2, 5, 13, 34, 89, 212, 281, 121, 10, 1, 2, 5, 13, 34, 89, 231, 485, 499, 166, 11, 1, 2, 5, 13, 34, 89, 233, 585, 1039
OFFSET
1,3
COMMENTS
A209563: first k terms of row n are F(2), ..., F(2k), where F = A000045 (Fibonacci numbers) and k=floor ((n+1)/2).
A209564: first k terms of row n are F(1), ..., F(2k-1), where k=floor ((n+2)/2).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...2
1...2...3
1...2...5...4
1...2...5...11...1
First three polynomials v(n,x): 1, 1+2x , 1+2x+3x^2 .
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209563 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209564 *)
CROSSREFS
Sequence in context: A065158 A364842 A181842 * A029653 A067763 A343863
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 10 2012
STATUS
approved