login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343863
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.
2
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
OFFSET
0,3
LINKS
FORMULA
T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 5, 9, 17, 33, 65, ...
4, 16, 82, 460, 2674, 15796, ...
5, 65, 1313, 29441, 684545, 16175105, ...
6, 326, 32826, 3680126, 427840626, 50547203126, ...
MATHEMATICA
T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, n, (n!/j!)^k);
CROSSREFS
Columns 0..3 give A000027(n+1), A000522, A006040, A217284.
Main diagonal gives A336247.
Cf. A291556.
Sequence in context: A209564 A029653 A067763 * A263683 A087730 A263736
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 02 2021
STATUS
approved